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Abstract
Using a family of special quasigraded Lie algebras on hyperelliptic curves
we construct new hierarchies of integrable nonlinear equations admitting zero-
curvature representations. We show that in the case of the rational degeneration
of the curve they coincide with Heisenberg magnet hierarchies.

PACS numbers: 02.20.Sa, 02.30.Ik, 02.30.Jr, 45.20.Jj

1. Introduction

During the last few decades several mathematical schemes that enable one to find hierarchies
of nonlinear integrable equations were proposed. Most of them have algebraic origin and are
based on the so-called zero-curvature equations [1]

∂U(x, tk, w)

∂tk
− ∂Vk(x, tk, w)

∂x
+ [U(x, tk, w), Vk(x, tk, w)] = 0 (1)

where U, Vk are the matrix-valued functions, depending on the dynamical variables, their
derivatives and an additional complex parameter w usually called ‘spectral’. Historically,
zero-curvature equations appeared as compatibility conditions for the set of auxiliary linear
problems [1]

∂ �ψ
∂x

= U(x, tk, w) �ψ (2)

∂ �ψ
∂tk

= Vk(x, tk, w) �ψ. (3)

In the case of the rational dependence of U and Vk on w, there are several possible Lie-
theoretical interpretations of equations (1). The first and the most known interpretation is
based on the so-called functional Hamiltonian formalism [1, 2] which permits one to interpret
equations (1) as a Hamiltonian equation of the Euler–Arnold type on the orbits of the centrally
extended algebra of periodic functions of variable x with the values in g ⊗ Pol(w,w−1).
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The second Lie-theoretical approach to zero-curvature equations is based thoroughly on
the Lie algebra g⊗Pol(w,w−1). It was independently discovered in the papers [3–5]. It treats
equations (1) as a compatibility condition for the infinite set of commuting Hamiltonian flows
on the Lie algebras g̃+ ≡ g ⊗ Pol(w) or g̃− ≡ g ⊗ Pol(w−1)

∂L(w)

∂tl
= [∇Hl(L(w)), L(w)] (4)

∂L(w)

∂tk
= [∇Hk(L(w)), L(w)] (5)

(here L(w) belongs to g̃± or their quotient algebras). Commuting Hamiltonians {Hk(L)} are
constructed using the Kostant–Adler scheme. Compatibility conditions for the corresponding
Hamiltonian flows read as

∂∇Hl(L(w))

∂tk
− ∂∇Hk(L(w))

∂tl
+ [∇Hl(L(w)),∇Hk(L(w))] = 0. (6)

We see that no ‘space’ variable x is a priori singled out in this approach. One may put
t0 ≡ x,∇H0(L(w)) ≡ U(x,w),∇Hk(L(w)) ≡ Vk(x,w), k > 0 in order to obtain zero-
curvature equations in the form (1). The most important ingredients in both Lie theoretical
schemes are loop algebras and their decompositions into the sum of two subalgebras (Kostant–
Adler scheme).

In [5–7], in order to obtain integrable hierarchies with elliptic dependence of the spectral
parameters, more complicated infinite-dimensional Lie algebras, namely special so(3)-valued
algebras of meromorphic functions on elliptic curves were proposed. These algebras admit
decompositions into the sum of two subalgebras, that enable one to find an infinite set of
commuting Hamiltonians and write down zero-curvature equations with elliptic spectral
parameters as compatibility conditions for the set of corresponding Hamiltonian flows.

In [8, 9] the algebraic construction of [7] was generalized on the matrix Lie algebras of
the higher ranks and higher genus algebraic curves. As a result quasigraded Lie algebras of
special so(d), sp(d) and gl(d)-valued meromorphic functions on the hyperelliptic curves were
obtained. They were shown to admit the Kostant–Adler scheme. In such a way new finite-
dimensional integrable Hamiltonian systems of the Euler–Arnold type were constructed [8, 9].

The main goal of the present paper is to extend the ‘second’ Lie-theoretical approach to
the case of the above mentioned special hyperelliptic Lie algebras g̃H, where g is equal to
so(d), sp(d) or gl(d). We show that the compatibility condition of the two Hamiltonian flows
on the Lie algebras g̃±

H or their quotient algebras also leads to the zero-curvature equations.
In such a way we obtain new hierarchies of integrable Hamiltonian equations admitting zero-
curvature representations. We show that simplest equations of the hierarchy coincide with a
kind of multiparametric deformation of the generalized Heizenberg magnet equations, where
the parameters of the deformations are the branching points of the hyperelliptic curve. We
consider also some examples of the higher equations from the hierarchy.

The structure of the present paper is as follows: in section 2 we introduce algebras g̃H
and describe their properties, in section 3 we describe integrable Hamiltonian systems on the
quotient algebras of the subalgebras g̃±

H, and in section 4 we construct new hierarchies of
integrable equations admitting zero-curvature representations.

2. Kostant–Adler admissible Lie algebras on hyperelliptic curves

Hyperelliptic curve embedded in Cd . Let us consider in the space Cd with the coordinates
w1, w2, . . . , wd the following system of quadrics:

w2
i − w2

j = aj − ai i, j = 1, d (7)
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where ai are arbitrary complex numbers. The rank of this system is d − 1, so the substitution

w2
i = w − ai y =

d∏
i=1

wi y2 =
d∏

i=1

(w − ai)

solves these equations and defines the equation of the hyperelliptic curve H. Hence equations
(7) define embedding of the hyperelliptic curve H in the linear space Cd .

Classical Lie algebras. Let g denote one of the classical matrix Lie algebras gl(d), so(d) and
sp(d) over the field of the complex numbers. We will need the explicit form of their bases.
Let Ii,j ∈ Mat(d, C) be a matrix defined as

(Iij )ab = δiaδjb.

Evidently, a basis in the algebra gl(d) could be built from the matrices Xij ≡ Iij , i, j ∈
1, . . . , d. The commutation relations in gl(d) will have the standard form

[Xi,j ,Xk,l ] = δk,jXi,l − δi,lXk,j .

The basis in the algebra so(d) could be chosen as: Xij ≡ Iij − Ii,j , i, j ∈ 1, . . . , d, with
‘skew-symmetry’ property Xij = −Xji and the following commutation relations:

[Xi,j ,Xk,l ] = δk,jXi,l − δi,lXk,j + δj,lXk,i − δk,iXj,l .

The basis in the algebra sp(n) we choose as Xij = Iij − εiεj I−i,−j , |i|, |j | ∈ 1, . . . , d , with
the property Xi,j = −εiεjX−j,−i , where εj = sign j and commutation relations

[Xi,j ,Xk,l ] = δk,jXi,l − δi,lXk,j + εiεj (δj,−lXk,−i − δk,−iX−j,l ).

Algebras on the curve. For the basic elements Xij of all three algebras gl(d), so(d) and sp(d)
and arbitrary n ∈ Z we introduce the following algebra-valued functions on the curve H, or
to be more precise on its double covering

Xn
ij = Xij ⊗ wnwiwj .

(Here we put w−i ≡ wi in the case of sp(d).) The next theorem holds true.

Theorem 1.

(i) Elements Xn
ij form n ∈ Z quasigraded Lie algebra g̃H with the following commutation

relations:

(1)
[
Xn

ij ,X
m
kl

] = δkjX
n+m+1
il − δilX

n+m+1
kj + aiδilX

n+m
kj − ajδkjX

n+m
il

for the gl(d) (8a)

(2)
[
Xn

ij ,X
m
kl

] = δkjX
n+m+1
il − δilX

n+m+1
kj + δjlX

n+m+1
ki − δikX

n+m+1
jl

+ aiδilX
n+m
kj − ajδkjX

n+m
il + aiδikX

n+m
jl − ajδjlX

n+m
ki

for the so(d) (8b)

(3)
[
Xn

ij ,X
m
kl

] = δkjX
n+m+1
il − δilX

n+m+1
kj + εiεj (δj−lX

n+m+1
k−i − δi−kX

n+m+1
j−l )

+ aiδilX
n+m
kj − ajδkjX

n+m
il + aiεiεj (aiδi−kX

n+m
j−l

− ajδj−lX
n+m
k−i ) for the sp(d). (8c)

(ii) Algebra g̃H as a linear space admits a decomposition into the direct sum of two
subalgebras: g̃H = g̃+

H + g̃−
H, where subalgebras g̃+

H and g̃−
H are generated by the elements

X0
ij , and X−1

ij respectively.
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Coadjoint representation and its invariants. In order to define Hamiltonian systems on g̃∗
H first

we have to define dual space g̃∗
H. Subsequently it will be convenient to identify g̃∗

H with g̃H.
For this purpose we will use the pairing between g̃H and g̃∗

H defined as follows: forL(w) ∈ g̃∗
H

and X(w) ∈ g̃H we have

〈X(w),L(w)〉f =
∮
w=0

f (w)y−2(w)(X(w) |L(w)) (9)

where f (w) is the arbitrary holomorphic function of the spectral parameter w. It will be
convenient to take f (w) = w−(K+1). We will denote these pairings by 〈 , 〉K . Under this
choice, the pairing Lax operator will have the following form:

L(w) =
∑
m∈Z

d∑
i,j=1

l
(m)
ij

wm−1y2(w)

wiwj

X∗
ij ≡

∑
m∈Z

d∑
i,j=1

l
(m)
ij Ym

ij (10)

where l
(m)
ij are coordinate functions on the dual space, which will be our basic dynamical

variables.
From the explicit form of pairing (9) and dual space (10) follows the next proposition.

Proposition 1.

(i) The action of the algebra g̃H on its dual space g̃∗
H coincides with commutator:

ad∗
X(w)L(w) = [L(w),X(w)]. (11)

(ii) Functions Hk
m(L(w)) = ∮

w=0 w
−m−1 trL(w)k , where m ∈ Z, are invariants of the

coadjoint representation.

Conclusion: Lie algebras g̃H admit a decomposition into the direct sum of two subalgebras
and possess an infinite number of invariant functions. Hence, they could be used to construct
integrable Hamiltonian systems via the Kostant–Adler scheme.

3. Hamiltonian systems via quasigraded algebras

In this section we will construct Hamiltonian systems on the coadjoint orbits of the Lie
groups that correspond to algebras g̃±

H, admitting Lax pair representations with hyperelliptic
spectral parameter and possessing a lot of mutually commuting integrals of motion. To define
Hamiltonian systems on the coadjoint orbits we have to define first the Lie–Poisson structures
and their Lie–Poisson subspaces.

3.1. Lie–Poisson structures and Lie–Poisson subspaces

Lie–Poisson structures. In the space g̃∗
H one can define many Lie–Poisson structures using

different pairings. We will use pairings 〈 , 〉K . They define brackets onP(g̃∗
H) in the following

way:

{F(L),G(L)}K =
∑
n,m∈Z

d∑
i,j,k,l=1

〈
L(w),

[
X−n+K

ij ,X−m+K
kl

]〉
K

∂G

∂l
(n)
ij

∂F

∂l
(m)
kl

. (12)

From proposition 1 follows the next statement:

Proposition 2. Functions Hk
m(L(w)) are central for brackets { , }K .
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Let us explicitly calculate Poisson brackets (12). It is easy to show that for the coordinate
functions l(m)

ij these brackets will have the following form:

(1)
{
l
(n)
ij , l

(m)
kl

}
K

= δkj l
(n+m−K−1)
il − δil l

(n+m−K−1)
kj + aiδil l

(n+m−K)
kj − ajδkj l

(n+m−K)
il

for gl(d) (13a)

(2)
{
l
(n)

ij , l
(m)

kl

}
K

= δkj l
(n+m−K−1)
il − δil l

(n+m−K−1)
kj + δjll

(n+m−K−1)
ki − δikl

(n+m−K−1)
j l

+ aiδil l
(n+m−K)
kj − aj δkj l

(n+m−K)
il + aiδikl

(n+m−K)
jl − ajδjll

(n+m−K)
ki

for so(d) (13b)

(3)
{
l
(n)
ij , l

(m)
kl

}
K

= δkj l
(n+m−K−1)
il − δil l

(n+m−K−1)
kj + εiεj

(
δj−l l

(n+m−K−1)
k−i − δi−kl

(n+m−K−1)
j−l

)
+ aiδil l

(n+m−K)
kj − ajδkj l

(n+m−K)
il + εiεj

(
aiδi−kl

(n+m−K)
j−l − ajδj−l l

(n+m−K)
k−i

)
for sp(d). (13c)

Lie–Poisson subspaces. Let us now consider the following subspace MN ⊂ g̃∗
H:

MN =
N+1∑
m=1

(g̃∗
H)m where (g̃∗

H)m =
∑
ij

l
(m)

ij Ym
ij .

For the each fixed N we will be interested in the brackets { , }K where K = 0 or K = N + 1.
The following proposition holds true:

Proposition 3. Brackets { , }0 and { , }N+1 could be restricted onto the space MN .

Proof. From the explicit form of the Poisson brackets (13) it follows that subspaces
M1,∞ = ∑∞

m=1(g̃
∗
H)m and M−∞,N = ∑N+1

m=−∞(g̃∗
H)m are Lie–Poisson subalgebras with

respect to the brackets { , }0 and { , }N+1, respectively (it is not difficult to show that these Poisson
algebras are isomorphic to g̃−

H and g̃+
H). From the explicit form of the Lie–Poisson brackets it

also follows that for any integer p subspaces Jp,∞ = ∑∞
m=p(g̃

∗H)m and J−∞,p = ∑p
−∞(g̃∗

H)m
are ideals in the above described Lie–Poisson subalgebras. That proves the proposition. �

3.2. Commutative subalgebras and Lax equations

Commutative subalgebras. We start this subsection with the following theorem:

Theorem 2. Let functions
{
Hk

m(L)
}

be defined as in proposition 1. They generate commutative
algebra with respect to the restriction of the brackets { , }0 and { , }N+1 onto MN .

Proof. From the explicit form of the Poisson brackets (13) it follows that the subspaces
complementary in g̃∗

H to M1,∞ = ∑∞
m=1(g̃

∗
H)m and M−∞,N = ∑N+1

m=−∞(g̃∗
H)m are also Lie–

Poisson subalgebras (with respect to the corresponding brackets { , }0 and { , }N+1). Hence,
from the Kostant–Adler scheme it follows that restriction of the invariant functions Hk

m(L)

onto the subalgebras (M1,∞, { , }0) and (M−∞,N , { , }N+1) forms commutative subalgebra
with respect to the corresponding brackets. Now to prove the theorem it is enough to take
into consideration that subspace (MN, { , }0) and (MN, { , }N+1) coincide with the quotient
algebras M−∞,N/J−∞,0 or M1,∞/JN+2,∞, and the projection on the quotient algebra is the
canonical homomorphism.

That proves the theorem. �
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Previous theorem gives us a large, commutative—with respect to both Lie–Poisson brackets
on MN—subalgebra generated by the functions

{
Hk

m(L)
}
. We will need the explicit form of

some of them.

Example 1. Second-order integrals
{
H 2

s

}
. Let

H 2(L(w)) ≡ 1
2 trL(w)2 =

D∑
s=0

H 2
s (L)w

s

where D = 2d + 2N − 2.
Higher order in the parameter w terms of the above expansions could be shown to be the

following:

H 2
D−1 =

d∑
i,j=1

l
(N+1)
ij l

(N)
ji − 1

2

d∑
i,j=1

d∑
k=1

(2ak − ai − aj )l
(N+1)
ij l

(N+1)
ji

H 2
D = 1

2

d∑
i,j=1

l
(N+1)
ij l

(N+1)
ji .

It is necessary to emphasize that among functions
{
Hk

m(L)
}

there are ‘geometric invariants’—
Casimir functions of the Lie–Poisson brackets { , }0 or { , }N+1 and commuting integrals, that
generate nontrivial flows on the corresponding coadjoint orbits. The following theorem enables
one to distinguish Casimir functions from the nontrivial integrals:

Theorem 3. Let us consider functions
{
Hk

s (L)
}

restricted to the subspace MN . Then

(i) functions Hk
s (L) are Casimir functions of the brackets { , }0 if ( k − 1) N + k (d − 1) � s

� kN + k(d − 1) for g = gl(d), g = sp(d) and g = so(d) for k = 2r.
(ii) functions Hk

s (L) are Casimir functions of the brackets { , }N+1 if 0 � s � N for g = gl(d),
g = sp(d) and g = so(d) for k = 2r.

(iii) for the arbitrary coordinate function l
(n)
ij the following identity holds true:

{
l
(n)
ij , H k

s

}
0

={
Hk

s+N+1, l
(n)
ij

}
N+1

.

Proof. Let X̃m
ij , Ỹ m

ij be vector fields, that correspond to the brackets { , }0 and { , }N+1, i.e.:

X̃m
ijF (L) ≡

{
l
(m)
ij , F (L)

}
0
, Ỹ m

ijF (L) ≡
{
l
(m)
ij , F (L)

}
N+1

.

Proof of the theorem will be based on the following proposition:

Proposition 4. Let L = ∑d
i,j=1 Lij (w)Xij , where Lij (w) = y2(w)

∑N+1
m=1 w

−1
i w−1

j l
(m)
ij wm−1.

The following identity holds true:(
wlX̃l

ij + wl−N−1Ỹ l
ij

)
F(L(w)) = (wiwj )

−1
d∑

m,n=1

C
(mn)

(ij),(kl)Lmn(w)
∂F (L(w))

∂Lkl(w)

where C(mn)

(ij),(kl) are structure constants of the algebras gl(d), sp(d) or so(d).
Proposition is proved by direct calculations. Now, to prove the theorem it is enough to take
into consideration that Hn(L) ≡ trLn(w) is a Casimir function, hence:

d∑
m,n=1

C
(mn)

(ij),(kl)Lmn(w)
∂Hn(L(w))

∂Lkl(w)
≡ 0

to expand Hn(L(w)) in the power series in the spectral parameter w and to compare the
summands with the equal degrees of w. That proves the theorem. �
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Lax equations. Let us consider Hamiltonian equations of the form

dl(k)ij

dt
=
{
l
(k)
ij , H (l

(m)
kl )

}
K

(14)

where Hamiltonian H is one of the functions
{
Hk

s

}
and { , }K are the brackets { , }0 or { , }N+1

restricted to the subspace MN .
These equations could be written in the Lax form

dL(w)

dt
= [L(w),M(w)] (15)

where L(w) ∈ Ms,p, and a second operator is defined as follows: M(w) = ∇KH(L(w)).
Here

∇KH(L(w)) =
N+1∑
m=1

d∑
ij=1

∂H

∂l
(m)
ij

X−m+K
ij (16)

is an algebra-valued gradient of H, and K = 0 or K = N + 1.
From part (iii) of theorem 3 follows the next important corollary.

Corollary 1. Hamiltonian equations for the Hamiltonian Hm
s and the brackets { , }0 coincide

with the Hamiltonian equations for the Hamiltonian Hm
s+N+1 and brackets { , }N+1:

∂l
(n)
ij

∂t
=
{
l
(n)
ij , Hm

s

(
l
(m)
kl

)}
0

=
{
Hm

s+N+1

(
l
(m)
kl

)
, l

(n)
ij

}
N+1

. (17)

Remark 1. In the Lax-pair form the statement of the corollary could be written as

∂L(w)

∂t
= [

L(w),∇0H
k
s (L(w))

] = [∇N+1H
k
s+N+1(L(w)), L(w)

]
. (18)

4. Hierarchies of integrable evolutionary equations

In this section we will discuss the so-called ‘finite-gap extension method’ that enables one to
construct non-linear evolutionary equations starting from the finite-dimensional Hamiltonian
systems.

4.1. Zero-curvature equations as the compatibility conditions

Usually zero-curvature equations are considered as the compatibility conditions of the set
of auxiliary linear problems. Another natural interpretation is to consider zero-curvature
equations as the compatibility condition of the set of Hamiltonian flows. We will develop this
approach starting from the general situation.

Case of the general algebras. Let us consider some simple (or reductive) Lie algebra g. Let
g̃ be the algebra of the functions of one complex variable (we do not specify their properties
here) with the values in g, or some of its quotient algebra. We will underline the functional
character of the algebra g̃ denoting its elements as X(w). Let L(w) ∈ g̃∗ be the generic
element of the dual space. It has the following form:

L(w) =
∑
k

dimg∑
a=1

l(k)a Xk∗
a ≡

dimg∑
a=1

la(w)Xa
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where Xa is a basic element of g, l(k)a is the coordinate function on g̃∗ and Xk∗
a is a basic

element of the g̃∗. Let us assume that with respect to some pairing 〈 , 〉 we have that g̃∗

coincide with g̃ as linear spaces. Under such assumptions the coadjoint representation of g̃
coincides with commutator.

Let us assume that we possess two Hamiltonian equations of Euler–Arnold type on the
Lie algebra g̃. Due to the assumptions given above, these Hamiltonian equations could be
written in the Lax form

∂L(w)

∂t1
= [∇h1(L(w)), L(w)]

∂L(w)

∂t2
= [∇h2(L(w)), L(w)] (19)

where ∇h1(L(w)) is a g̃-valued gradient of h1(L(w)), defined via the pairing 〈 , 〉.
Our considerations will be based on the following proposition:

Proposition 5. Let Hamiltonians h1(L(w)) and h2(L(w)) commute with respect to the Lie–
Poisson brackets on g̃∗. Then algebra-valued gradients of the functions h1 and h2 satisfy the
following equations:

∂∇h1(L)

∂t2
− ∂∇h2(L)

∂t1
− [∇h2(L),∇h1(L)] = dC(L) (20)

where dC(L) =
dimg∑
a=1

∂C(L(w))

∂la(w)
Xa and C(L) is some g-invariant function.

Proof. Hamiltonians h1(L) and h2(L) commute with respect to the Lie–Poisson brackets on g∗

That means that corresponding Hamiltonian flows also commute. That is why we have

∂2L

∂t2∂t1
= ∂2L

∂t1∂t2
.

Using the equation of motion (19) we obtain the following differential equations:

∂

∂t2
([∇h1(L), L]) = ∂

∂t1
([∇h2(L), L]).

They are equivalent to the zero-curvature-type equations. Indeed, using the Leibnitz rule, the
Hamiltonian differential equations (19) and Jacobi identity in g we obtain[(

∂∇h1(L)

∂t2
− ∂∇h2(L)

∂t1
− [∇h2(L),∇h1(L)]

)
, L

]
= 0.

It is equivalent to the following ‘generalized zero-curvature equations’:

∂∇h1(L)

∂t2
− ∂∇h2(L)

∂t1
− [∇h2(L),∇h1(L)] = dC(L)

where C(L) is some g-invariant function1. Indeed, due to the fact that C(L(w)) is an invariant
function we have: [dC(L(w)), L(w)] = 0. This proves the proposition. �

Remark 2. Proposition 5 by itself does not provide the integrability of the corresponding
differential equations in the partial derivatives on the elements L(t1, t2, w) (20). Indeed,
equations (20) do not coincide with the zero-curvature equations. However, in special cases,
when the algebra g̃ is graded or quasigraded, and the elements ∇hi(L) possess the fixed
quasigrade, it is possible to show that the Casimir function C(L(w)) should be taken as
constant. This will be illustrated in the next subsection on the example of the algebras g̃±

H.
1 Rigorously speaking, we have to take here p(w)C(L) instead of C(L), where p(w) is some function of the spectral
parameter w. But this will not influence our subsequent considerations and we will put p ≡ const.
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Case of Kostant–Adler admissible hyperelliptic Lie algebras. Let us now consider the case
of g̃ = g̃±

H or their quotient algebras. Let us consider the Hamiltonian equations on their
dual space. In detail, let us consider two non-trivial Hamiltonian equations on their Poisson
subspace MN generated by two commuting functions hs1 ≡ H 2

s1
, hs2 ≡ H 2

s2
, where s1 =

D− (N + k + 1), s2 = D− (N + l + 1) and the brackets { , }0 or, equivalently (see theorem 3)
by the commuting functions hD−k ≡ H 2

D−k, hD−l ≡ H 2
D−l , where k, l ∈ 0, 2d + N − 3 and

the brackets { , }N+1. They could be written in the Lax-pair form:

∂L(w)

∂tk
= [∇N+1H

2
D−k(L(w)), L(w)

] ∂L(w)

∂tl
= [∇N+1H

2
D−l(L(w)), L(w)

]
. (21)

The following proposition holds true:

Proposition 6. Matrix-valued functions ∇N+1hD−k and ∇N+1hD−l satisfy zero-curvature
equations:

∂∇N+1hD−k

∂tl
− ∂∇N+1hD−l

∂tk
+ [∇N+1hD−k,∇N+1hD−l ] = 0. (22)

Proof. The statement of this proposition is a consequence of proposition 5. Indeed due to this
proposition we obtain

∂∇N+1hD−k

∂tl
− ∂∇N+1hD−l

∂tk
+ [∇N+1hD−k,∇N+1hD−l ] = dC(L).

On the other hand ∇N+1hD−k and ∇N+1hD−l are the elements of the algebra g̃+
H that lie in the

‘strip’ of the fixed grade g0 +g1 + · · ·+gk and g0 +g1 + · · ·+gl respectively. Due to the fact that
g̃+
H is a quasigraded Lie algebra, [∇N+1hD−k,∇N+1hD−l ] lie in the strip g0 + g1 + + · · · + gk+l+1.

On the other hand it is easy to prove that for each fixed N and for each invariant function
Cr (L) of the order r element dCr(L), r � 2 lies in the strip

∑r(N+d−1)
k=0 gk. Hence, at least for

k, l � N + d − 2, we should put C(L) ≡ const ⇒ dC(L) = 0. This proves the proposition.
�

Remark 3. The previous proposition provides us with a large class of U−V pairs admitting
zero-curvature equations. The last are non-linear equations in the partial derivatives on the
dynamical variables—matrix elements of the matrices L(w). It is easy to see that the space
MN could be viewed as a finite-gap sector of these equations (see [10] for the general definition
of the finite-gap sectors of equations admitting zero-curvature representations). Due to the
fact that in each space MN zero-curvature equations are the results of the commutativity of
Hamiltonian flows from the set of commuting functions constituting the finite-dimensional
integrable Hamiltonian system, we will say that the resulting equations in the partial derivatives
are ‘integrable in the finite-gap sense’. In the next sections we will consider several examples
of such equations.

4.2. Integrable deformation of Heisenberg magnet equations

Now let us consider the simplest integrable equations that could be obtained from the results
of the previous subsection. For this purpose we will consider the case k = 0, l = 1. From the
previous section it follows that matrix-valued functions

U(x, t, w) ≡ ∇N+1hD V1(x, t, w) ≡ ∇N+1hD−1
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where x ≡ t0, t ≡ t1, constitute a new type of U−V pair, satisfying zero-curvature equations.
Direct calculation gives their explicit form

V1 =
d∑

i,j=1

(
l
(N)

ij + (ai + aj )l
(N+1)
ij

)
wiwjXij + w

d∑
i,j=1

l
(N+1)
ij wiwjXij

U =
d∑

i,j=1

l
(N+1)
ij wiwjXij .

Here we have imposed the following constraints on the parameters ai :
∑d

k=1 ak = 0.

Remark 4. In the case of rational degeneration we obtain the U−V pair for the Heisenberg
magnet (HM) equations

U = w

d∑
i,j=1

l
(N+1)
ij Xij , V1 =

d∑
i,j=1

wl
(N)
ij Xij + w2

d∑
i,j=1

l
(N+1)
ij Xij .

Let us consider the obtained zero-curvature equations in more detail. For this purpose, let
us introduce auxiliary notation. Let us introduce two new spectral parameter-independent
matrices, depending on the dynamical variables l(N)

ij , l
(N+1)
ij

L =
d∑

i,j=1

l
(N+1)
ij Xij M1 =

d∑
i,j=1

(
l
(N)
ij + (ai + aj )l

(N+1)
ij

)
Xij . (23)

By direct calculations one can prove the following proposition:

Proposition 7. Equations (22) for k = 0, l = 1 are equivalent to the following system of
differential equations on the matrices M1 and L:

∂L

∂t
− ∂M1

∂x
= [L,M1]A (24a)

∂L

∂x
= [L,M1]. (24b)

Here [L,M1]A ≡ LAM1 − M1AL, and A = diag(a1, a2, . . . , ad).

Remark 5. Note that equations (24) have the same form in each ‘finite-gap’ sector MN , i.e.
effectively they do not depend on the number N.

Equations (24) contain two types of dynamical variables—matrices L and M1.
Nevertheless, in some cases, using equation (24b) along with special G-invariant constraints
on matrix L, it is possible to express M1 explicitly via L and its derivatives, which leads to
nonlinear equations in the partial derivatives on the matrix elements of matrix L. We will
call them deformed Heisenberg magnet (DHM) equations. Let us find explicit form of these
equations for different Lie algebras g and different forms of G-invariant constraints on L ∈ g.

Case of g = so(3). In this case we can consider elements of g as vectors:

�L =
3∑

k=1

LkXk
�M1 =

3∑
k=1

MkXk

where Xk ≡ εijkXij , and rewrite equations (24) as follows:

∂ �L
∂t

− ∂ �M1

∂x
= A[ �L × �M1] (25a)

∂ �L
∂x

= [ �L × �M1]. (25b)
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Here �L × �M denotes a vector product of two vectors

�L × �M1 =
3∑

i,j,k=1

εijkLiMjXk

A( �L) denotes the action of the matrix A on vector �L: A �L ≡ ∑3
k=1 akLkXk .

As in the case of the Heisenberg magnet and Landau–Lifshitz equations we will impose
the following constraint on the vector �L:

�L2 =
3∑

i=1

L2
i = 1.

This means that vector L belongs to the coadjoint orbit of SO(3)—sphere S2. The invariance of
this constraint with respect to all commuting flows follows from the ‘finite-gap’ considerations.
Indeed, equations (25) could be viewed as compatibility conditions of two Hamiltonian flows
on MN with respect to the brackets { , }0. On the other hand, as follows from theorem 1,
H 2

D ≡ �L2 is a Casimir function for these brackets for arbitrary N. That proves the invariance
of the above constraint.

Using this constraint we can express �M1 via �L. Indeed, it is easy to prove that for vectors
�L, satisfying the above constraint, the substitution

�M1 = − �L × ∂ �L
∂x

+ c1(L) �L
gives a general solution of equations (25b). In order to obtain the explicit form of the coefficient
c1(L) it is enough to take into consideration that in each ‘finite-gap’ sector MN matrices M1

and L are expressed via l(N+1)
ij and l

(N)
ij and

H 2
D−1 = ( �M1, �L) + 1

2 (A
�L, �L)

is a Casimir function of the brackets { , }0, and hence is equal to constant MN for each N.
(Here by ( �L, �M) we denoted the scalar product of vectors �L and �M1.)

Rescaling the time variable t → −t we obtain the following equations on vector �L:

∂ �L
∂t

= �L × ∂2 �L
∂x2

− A
∂ �L
∂x

+
∂

∂x

((
1

2
(A �L, �L) − c1

)
�L
)

(26)

In such a form these equations were discovered in [7].

Case of g = gl(d). Let us consider degenerate coadjoint orbits of the group G = Gl(d) (we
assume that the basic field is C or R) in the space of the matrices L, given by the matrix
equations

L2 = αL

where α is an arbitrary complex or real number. It is easy to show that these equations
determine the union of the GL(d) coadjoint orbits of the type GL(d)/Gl(d1) × GL(d2). Proof
of the consistency of these equations with equations (24) could be done by returning to the
spaces MN . Indeed, equations (24) are the compatibility conditions for equations (21). The
last could be interpreted as a pair of Hamiltonian equations written with respect to the brackets
{ , }0. On the other hand, taking into consideration that L ≡ ∑d

i,j=1 l
(N+1)
ij Xij , it is easy to

prove that Fij ≡ (L2)ij − α(L)ij are covariants with respect to the brackets { , }0 (see (13)).
Hence equations Fij = 0 determine an invariant manifold—union of the coadjoint orbits of
the group Gl(d) of the type described above.
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Now, to obtain the DHM equation we have to express the matrix M1 via the matrix L. It
is not difficult to show that if L2 = αL, then

[
L,
[
L, ∂L

∂x

]] = α2 ∂L
∂x

and substitution

M1 = (α2)−1

[
L,

∂L

∂x

]
+ c1(L)L

give the general solution of equations (24b). An explicit expression for c1(L) could be
obtained, using the fact that in each ‘finite-gap’ sector MN matrices M1 and L are expressed
via l(N+1)

ij and l
(N)
ij . Taking this into consideration we obtain that

H 2
D−1 = tr(LM1) − tr(AL2)

is a Casimir function for the brackets { , }0 in each sector MN . Using this constraint on the
matrices M and L, we obtain for c1(L) the next expression

c1(L) = (2 tr(L2))−1 tr(AL2) + c1 = (2trL)−1 tr(AL) + c1.

Note, that tr L2 = α tr L = const. Using the obtained expression for M1 and c1(L) and rescaling
the time variable: t → α−2t , we obtain that equations (24a) on the described above orbits are
equivalent to one nonlinear equation of the following form:

∂L

∂t
=
[
L,

∂2L

∂x2

]
+

[
L,

[
L,

∂L

∂x

]]
A

+ α2 ∂

∂x
(c1(L)L). (27)

Case of g = so(2n) or g = sp(n). Let us consider the special degenerate coadjoint orbit of G
= SO(2d) or G = SP(d) given by the matrix equations:

L2 = β1.

These are the orbits of the type SO (2d )/GL (d) and SP (d )/GL (d ) and β is a complex or
real number that determines the initial point of the orbit. In analogy to the previous case it is
possible to show that on these orbits equations (24) are equivalent to one nonlinear equation
in the partial derivatives of the following form:

∂L

∂t
=
[
L,

∂2L

∂x2

]
+

[
L,

[
L,

∂L

∂x

]]
A

+ βc1
∂L

∂x
(28)

where c1 is an arbitrary constant.

Remark 6. The difference in the forms of the resulting equations (27) and (28) is the result
of the different forms of the equations of the corresponding coadjoint orbits.

Remark 7. Note that in the process of deriving the final form of nonlinear evolutionary
equations (26)–(28) we have used two Lie–Poisson brackets in the auxiliary Poisson subspace
MN . Brackets { , }N+1 were used to generate U−V pairs for the zero-curvature equations, and
brackets { , }0 for obtaining invariant constraints on our dynamical variables.

4.3. Higher equations from hierarchy

In this subsection we will consider other integrable equations, admitting zero-curva-ture
representations, that could be obtained using the approach described above. For this purpose
we will consider zero-curvature conditions of the type (22), with k = 0, l > 1:
∂∇N+1hD

∂tl
− ∂∇N+1hD−l

∂x
+ [∇N+1hD,∇N+1hD−l] = 0. (29)

We will use the notation U = ∇N+1hD , Vl = ∇N+1hD−l . Direct calculation gives

U =
d∑

i,j=1

l
(N+1)
ij wiwjXij Vl =

l∑
k=0

d∑
i,j=1

m(k)
(
l
(N+1)
ij , l

(N)
ij , . . . , l

(N+1−k)
ij

)
wkwiwjXij
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where m(k)
(
l
(N+1)
ij , l

(N)

ij , . . . , l
(N+1−k)

ij

)
depend on the deformation parameters ai, aj and are

linear in the dynamical variables l(N−k)

ij . For example, we have

m(0)
(
l
(N+1)
ij

)
≡ l

(N+1)
ij m(1)

(
l
(N+1)
ij

)
≡ l

(N)
ij + (ai + aj )l

(N+1)
ij .

Remark 8. In the rational degeneration, when ai = 0, for i = 1, d we obtain

m(k)
(
l
(N+1)
ij , l

(N)

ij , . . . , l
(N+1−k)

ij

)
≡ l

(N+1−k)

ij .

Let us consider the obtained zero-curvature equations (29) in more detail. Let us introduce
new, spectral parameter independent matrices, dependent on the variables introduced above

L =
d∑

i,j=1

l
(N+1)
ij Xij Mk =

d∑
i,j=1

m(k)
(
l
(N+1)
ij , l

(N)

ij , . . . , l
(N+1−k)

ij

)
Xij k ∈ 1, l. (30)

Direct calculation gives the following statement:

Proposition 8. Equations (29) are equivalent to the following system of differential equations
on the matrices L and Mk, k ∈ 1, l:

∂L

∂tl
− ∂Ml

∂x
= [L,Ml]A (31a)

∂L

∂x
= [L,M1] (31b)

∂Mk

∂x
= [L,Mk+1] − [L,Mk]A where k ∈ 1, l − 1. (31c)

Here [L,Mk]A ≡ LAMk − MkAL, and A = diag(a1, a2, . . . , ad).

Equations (29) are the family of differential equations in partial derivatives on the matrix
elements of the matrices L and Mk .

In order to get rid of the additional dynamical variables we have to express
m(k)

(
l
(N+1)
ij , l

(N)

ij , . . . , l
(N−k)

ij

)
via l

(N+1)
ij ,

(
l
(N+1)
ij

)
x
,
(
l
(N+1)
ij

)
xx
, . . . and impose additional

constraints on the matrix elements l(N+1)
ij of matrix L (see previous subsection). In the result

we obtain nonlinear differential equations in partial derivatives on the matrix elements of the
matrix L of the following form:

∂L

∂tl
= ∂Ml(L,Lx, Lxx, . . .)

∂x
+ [L,Ml(L,Lx, Lxx, . . .)]A. (32)

We will call them higher equations of the DHM hierarchy.

Example of the higher equation of the hierarchy. In the case of general l, higher equations
of the DHM hierarchy have a very complicated form. We will now consider only the l = 2
example. In this case we have the following set of equations:

∂L

∂t2
− ∂M2

∂x
= [L,M2]A (33a)

∂M1

∂x
= [L,M2] − [L,M1]A (33b)

∂L

∂x
= [L,M1]. (33c)

In order to obtain one equation in the partial derivatives on elements of matrix L we have
to express M1 via L and Lx and M2 via L, Lx and Lxx. Let us consider the explicit form of
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the resulting equations in the case g = so(3). In this case we will again consider elements
of g as vectors: �L = ∑3

k=1 LkXk , �M1 = ∑3
k=1 M1kXk, �M2 = ∑3

k=1 M2kXk and rewrite
zero-curvature equations (33) as follows:

∂ �L
∂t2

− ∂ �M2

∂x
= A[ �L × �M2] (34a)

∂ �M1

∂x
= [ �L × �M2] − A[ �L × �M1] (34b)

∂ �L
∂x

= [ �L × �M1]. (34c)

Imposing the standard constraint: �L2 = ∑3
i=1 L

2
i = 1, we obtain for �M1 and �M2 the following

expressions:

�M1 = −
[

�L × ∂ �L
∂x

]
+ c1(L) �L

�M2 = −
[

�L × ∂

∂x
( �M1 + A �L)

]
+ c2(L) �L

where c1(L) = 1
2 (A

�L, �L) + c1 (see previous subsection). In order to obtain the explicit form
of the coefficient c2(L) it is enough to take into consideration that in each sector MN matrices
Mi and L are expressed via l(N+1)

ij , l(N)
ij and l

(N−1)
ij and

H 2
D−2 = ( �M2, �L) + ( �L,A �M1) + (A �L, �M1) + 1

2 (
�M1, �M1) + (A �L,A �L)

is a Casimir function of the brackets { , }0, and hence is equal to a constant in MN . Taking
this into account along with the explicit form of �M1 as a function of �L, �Lx one can easily
derive an explicit expression for c2(L) ≡ ( �M2, �L) as a function of �L, �Lx .

The resulting higher DHM equations will have the following complicated form:

∂ �L
∂t2

= −∂3 �L
∂x3

− ∂

∂x

(
c1(L)

[
�L × ∂ �L

∂x

]
+ A

[
�L × ∂ �L

∂x

]
+

[
�L × A

∂ �L
∂x

])

+
∂

∂x

((
c2(L) −

(
∂ �L
∂x

,
∂ �L
∂x

))
�L + c1(L)A �L + A2 �L

)
. (35)

Remark 9. In the rational degeneration (ai = 0 ⇒ A ≡ 0) equations (35) acquire the
following form:

∂ �L
∂t2

= −∂3 �L
∂x3

− ∂

∂x

(
c1(L)

[
�L × ∂ �L

∂x

])
+

∂

∂x

((
c2(L) −

(
∂ �L
∂x

,
∂ �L
∂x

))
�L
)

(36)

where c1(L) = c1, c2(L) = c2 − 1
2

(
∂ �L
∂x
, ∂ �L
∂x

)
. Equation (36) after substitution t2 → −t2

coincides with the first higher equation of the Heisenberg magnet hierarchy.

4.4. Conclusion and discussion

In the present paper we have constructed new types of integrable nonlinear equations in the
partial derivatives using special quasigraded Lie algebras g̃H on hyperelliptic curves [8, 9]. We
have shown that the constructed equations admit zero-curvature representations and possess an
infinite sequence of the embedded ‘finite-gap’ sectors MN : M0 ⊂ M1 ⊂ · · · ⊂ MN ⊂ · · · ,
each of which coincides with an integrable Hamiltonian equation of the Euler–Arnold type.
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An interesting problem, concerning the constructed equations in the partial derivatives,
is whether they could be interpreted as Hamiltonian equations on the orbits of the centrally
extended algebra of periodic functions of variable x with the values in g̃H. There exist some
hints (see [7]) that such an interpretation is possible, at least in the case of g = so(3). We plan
to return to this problem in our subsequent papers.

Acknowledgments

The research described in this publication was made possible in part by the Award number
UP1-2115 of the US Civilian Research and Development Foundation (CRDF) for independent
states of the former Soviet Union.

References

[1] Tahtadjan L and Faddejev L 1987 Hamiltonian Approach in the Theory of Solitons (Berlin: Springer) p 527
[2] Reyman A and Semenov Tian-Shansky M 1980 Sov. Math.–Dokl. 21 630
[3] Flaschka H, Newell A and Ratiu T 1983 Physica D 9 303–24
[4] Holod P 1982 Kiev preprint ITF-82-144R
[5] Holod P 1984 Proc. Conf. Int. on Nonlinear and Turbulent Process in Physics (Kiev, 1983) vol 3 (New York:

Harwood Academic) pp 1361–67
[6] Holod P 1987 Theor. Math. Phys. 70 11
[7] Holod P 1987 Sov. Phys.–Dokl. 32 107–109
[8] Skrypnyk T 2000 Proc. 23rd Int. Colloquium on the Group Theoretical Methods in Physics, LANL Preprint

nlin.SI-0010005
[9] Skrypnyk T 2001 J. Math. Phys. 48 4570

[10] Dubrovin B, Krichever I and Novikov S 1985 VINITI Fundamental Directions 4 179


